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A PRELIMINARYSTUDY OF SOMEPERIODICORBITS

FORMOONPROBES

by

Su-Shu Huang

Goddard Space Flight Center

SUMMARY

A preliminary study has been made of ideal space vehicle or-

bits for moon probes by the method of successive approximation

carried out on the IBM 7090 digital computer, under the approxi-

mation implied in the restricted three-body problem. It has been

found that orbits are possible on which the space vehicle can en-

circle both the earth and the moon at reasonable distances for a

period of a few years or more. The practical procedure by which

such orbits can be systematically generated solely by numerical

methods is given here, and some examples are also given.
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A PRELIMINARY STUDY OF SOME PERIODIC ORBITS

FORMOON PROBES

by

Su-Shu Huang

Goddard Space Flight Center

INTRODUCTION

Ideal space vehicle orbits for moon probes pass closely around the moon and after-

wards approach close to the earth so that whatever information the space vehicle has

gathered around the moon can be transmitted back to the earth. We can devide such orbits

into two groups: (1) orbits which enclose the earth and the moon and which pass both at

short distances a number of times, and (2) orbits which first pass closely around the moon

and then return to the same geographical point at which the vehicle was launched. Orbits

of the second kind will not be considered here; this study will concentrate only on those

orbits of the first kind which leads us to the problem of searching for orbits in the well

known problem of three bodies in celestial mechanics. With the advent of high-speed elec-

tronic computers, the time has come to approach the three-body problem numerically.

This is especially true for any problem such as the present one where the time scale in-

volved is not astronomically long but rather is humanly short. In other words, the coming

of astronautics has introduced into celestial mechanics many new problems of empirical

nature which can be solved more easily in an unorthodox way by means of numerical ex-

periments than in the standard manner by mathematical analysis.

Several papers (References 1, 2, and 3) have appeared recently in which the periodic

orbits in the restricted three-body problem have been derived partly by means of numerical

computations. In this report, the emphasis is on the practical procedure by which the or-

bits that may be used for actual moon probes can be systematically generated solely by

numerical methods.

THE STARTING CONDITION OF NUMERICAL EXPERIMENTS

If the desirable orbits are to be obtained numerically (by successive approximation),

there must be some starting conditions. As the starting condition we employ those orbits

enclosing both the earth and the moon which have periods commersurable with the period

1
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of themoonandwhichpassrelatively closeto theearthaswell asto themoon. Theeffect
of themoonis neglectedin thetreatmentof thestartingcondition;therefore,in this section
only theorbits of thevehiclein thegravitationalfield of the earthaloneare considered.
In thenextsection,theperturbationbythemoon,insofarasthemotionof thevehiclecan
beapproximatedbytherestricted three-bodyproblem,will beconsideredin theprocess
of successiveapproximation.Of course,oncethedesiredorbits within theframeworkof
the restricted three-bodyproblemhavebeenfound,thoseactualonesin the earth-moon-
sunsystemmaybeobtainedby further successiveapproximationin thesamemanneras
thedesiredorbits in therestricted three-bodyproblemhavebeengeneratedherefrom the
startingconditionbasedupontwo-bodyapproximation.However_this preliminary study
doesnotgobeyondtheapproximationimplied in therestricted three-bodyproblem.

Let thesemimajoraxesof theorbits of themoonandof thespacevehiclearoundthe
earthbe 1 and a andlet their periodsbe P0andP, respectively. Figure 1illustrates the
orbit S1S2$3...S7 of thevehicleandtheorbit M1M2M3..-M7of themoonwith theearthat
point E. Wesupposethevehicleto enterorbit at $1whenthemoonis at thepositionM1
onits orbit. If thetwoperiodsP0 andP havea ratio givenby

P 2m

Po 2n + 1
(1)

!

t_

where both m and n are integers, and if

(1 + e) a = a (2)

where e represents thdeccentricity of the vehicle's orbit and _ is a numerical factor of

the order of unity such that (= - I) measures the proximity of the vehicle's approach to

the moon, the vehicle will repeatedly reach the moon and return to the neighborhood of the

earth. The time interval between two consecutive encounters of the vehicle with the moon

is 2m sidereal months if the perturbing effect of the moon is neglected. The actual time

interval has to be computed by integrating the equations of motion of the vehicle.

If the space vehicle is launched at a point between the earth and the moon and on the

line joining them, the ratio of P0 and P would be

P 2m+ 1

P0 2n + 1
(3)

In general,

It = I, 2, 3, • .....
P 2rn'/ + 2 m' O, 1 2,

P---o : 2n't + l ' ' ..... (4)
n' 0, 1, 2, • .....
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Figure 1 - An illustrationofthe periodic encounters between the moon

and the space vehicle. The space vehicle is launched at S1 when the
moon is at the position M 1. When the moon moves around the earth E
from M l to M 2 to ... to MT, the space vehicle moves from S1 to Sg
to ... to S7. The moon's perturbing effect on the motion _f the vehi-
cle is neglected here.

It is obvious that the commeasurability of P and Po may be simply written as a ratio

of two relative prime numbers. However, by writing the condition in the somewhat cumber-

some form of Equation 4 we have the advantage of being able to see at once what position

the moon should be in when the satellite is launched. Thus, Equation 4 reduces to Equation

lfor I = 1, m' = m- 1, n' = n, and reduces to Equation 2 for t = 2, rn' = m, n' = n . Both

Message (Reference 2) and Newton (Reference 3) have studied the case for P/P0 = 1/2 cor-

responding to t -- 4, m' = n" = 0 . In this paper we shall consider the situations arising

from Equation 1.

Equation 2 is based on the assumption that the encounter between the moon and the

space vehicle occurs at the apogee of the space vehicle's orbit. If an encounter at perigee

is desired, a minus sign should be used in place of the plus sign In Equation 2. However,

from practical considerations, only the encounter at apogee is interesting. Consequently,

this discussion will be limited to encounters at apogee.
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It can be easily seen that from Equation 1 that

a = _2--_-r-r] (i -,)_ , (5)

where _ is the moon's fraction of the mass of the earth-moon system and is equal to

0.01215. Thus, Equation 5 determines the semimajor axis a of the required orbit of the

vehicle in terms of two integers m and n. Once a is determined, e can be obtained from

Equation 2 provided that _ is given.

The computed values of a for different integers m and n are given in Table 1. It is

apparent that large values of m are not useful because it takes too long to have an encounter

between the vehicle and the moon. Therefore, only the a values for m up to 4 have been

tabulated.

!

Table 1

Values of a for Different Combinations of m and n

Value of a
n

m = 1 m = 2 m = 3 m = 4

1

2

3

4

5

6

7

8

9

I0

0.7600

O. 5407

0.4321

0.3654

O. 3196

0.2859

0.2599

0.2391

0.2220

0.2077

1.2064

0.8583

0.6858

O. 5800

O. 5073

0.4538

0.4126

0.3796

0.3525

0.3297

1.5809 1.9150

1.1247 1.3625

0.8986 1.0886

0.7600 0.9207

0.6648 0.8053

O. 5947 0.7204

0.5407 0.6550

0.4974 0.6026

0.4619 0.5595

0.4321 0.5234

Actually not alI of the entries in Table 1 represent desirable semimajor axes for the

orbits of the moon-probing vehicle. This is due to the restriction imposed on the value

of a. If a is very near to unity, the space vehicle will be strongly perturbed by the moon

or will even collide with its surface, and consequently it would not return to the neighbor-

hood of the earth. On the other hand, if a is considerably different from unity, the vehicle

will be too far away from the moon for a successful moon probe. The desired value of a

may be tentatively set at a value between 1.08 and 1.20. This is, of course, only for a

at the starting point of our successive approximation; the actual value of _ corresponding

to the final orbit will be different from that of the starting orbit. However, since the effect
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of the moon on the vehicle is important only in a short time-interval, we should expect

that the final a may not be greatly different from the starting value. This expectation is

borne out in the next section.

Now _ is further limited by the condition that the orbit of the vehicle should be an el-

lipse; that is, e must be less than 1. It follows from Equation 2 that

a < 2a . (6)

If a must be greater than 1.08, those values of a < 0.54 can be eliminated immediately.

On the other hand, e must be greater than zero, and hence

> a . (7)

If a is required to be less than 1.2 so that the vehicle can reach points near the moon,

those values of a > 1.2 must be excluded.

For the practical considerations, such as the launching of the vehicle and later com-

munications with it, we prefer that a(1 - e) be not too large. Let us suppose that it is

necessary to restrict a(1 - e) to be less than y where 7 is a numerical factor of our

choice. It follows then that

a < 2 (8)

If the largest value for a which is still meaningful for a moon probe is taken as 1.2 and if

= 0.5, then a must be less than 0.85 according to Equation 8. Therefore, all cases with

a > 0.85 can be eliminated.

After the values of a which are either greater than 0.85 or smaller than 0.54 have

been excluded from our consideration as possible semimajor axes of starting orbits for a

moon-probe, Table 1 reduces to Table 2. The present paper will mainly consider the case

m =1, n=l.

A PROCEDURE FOR GENERATING THE DESIRED ORBITS

Because of the perturbation by the moon, the starting orbits proposed in the previous

section do not represent the true orbit of the vehicle for a moon probe. Since in successive

passes the vehicle will be near the moon only when the latter is located on the same portion

of its orbit (that is, in the neighborhood of M 1 in Figure 1), the moon may be regarded as

in circular motion when its perturbation on the vehicle is treated. This reduces the pertur-

bation calculation to the integration of the differential equations in the restricted three-body



Table2
Valuesof 0.85> a > 0.53 for Different

Combinations of m and n

1

2

3

4

5

6

7

8

9

Values of 0.85 > a > 0.53

m=l

0.7600

O. 5407

m=2

0.6858

0.5800

m=3

0.7600

0.6648

0.5947

0.5407

m=4

0.8053

0.7204

0.6550

0.6026

0.5595

problem. The result thus derived does not

give exactly the required orbit for the moon

probe in the sun-earth-moon system. How-

ever, it represents a good approximation to

the required orbit. Also, it provides a new

starting point for further successive approxi-

mation under more realistic conditions for

the motions of the moon and the earth around

each other and around the sun.

For the time being, then, let us study

the orbit of the vehicle within the framework

of the restricted three-body problem. Fol-

lowing the usual notation (for example, Ref-

erence 4) we use a coordinate system rotating

with the moon and with its origin located at

the common center of mass of the earth and

moon. Also, the separation between the earth and the moon will be chosen as the unit of

length. Moreover, the total mass of the system will be taken as unity; therefore, the mass

of the earth is (1 - _) and that of the moon is _ = 0.01215. In this system of units, the

period of the moon around the earth is 2_.

If we now confine the third body, the space vehicle, to the orbital plane of the moon

around the earth, the equations of its motion assume the form:

d2x dy x - xI x -x2
dt---_ - 2--_- = x - (!-/_) _ (9)

r 13 r 2"I '

and

dx

d2Y + 2_- y - (1-_) _ - Iz --_-y
dt_ = r,_ r/ (10)

where r, and r_ are distances of the third body from the earth and the moon, the latter

two being located at (x 1, 0) and (x_, 0) respectively, and

Xl = -tz ' L

/x2 = 1 -_ .

(II)

It is well known that Equations 9 and 10 admit an integral of the following form:



7

- _ fd_V_f*V
2(_ _) +---_dt] \a_j = c (12)x 2 + y2 + rl r2

¢q
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where C is the constant of integration.

The moon probe vehicle is supposed to be launched at the perigee (denoted by S 1 in

Figure 1) whose coordinates in the present reference system are

x = -a(1 - e) -_ , "_ (13)

Jy = 0 ,

and whose distance from the earth is a(1 -e) . The launching velocity necessary to place

the vehicle into the starting orbit proposed previously can be computed easily. In the

rotating system of reference, the two components are given approximately by

dx

-- -- 0dt

dy _ E ' + e ]i
d_ - _ L_-U:_j + a(1-e)

t (14)

The minus sign in the equation for dy/dt denotes the ejection which will lead to orbits ro-

tating in the same sense as the moon around the earth (direct orbits), while the plus sign

leads to orbits rotating in the opposite sense as the moon (retrograde orbits). It is there-

fore obvious that the moon's perturbing effect on the vehicle is greater in the first case

than in the second because when the vehicle and the moon are revolving in the same sense

their encounter will last longer than when they are revolving in the opposite sense. There-

fore, we would expect that it would be easier to find desired orbits of retrograde motion

than to find those of direct motion. Indeed, as will be seen immediately, the orbits revolv-

ing in the same sense are unstable.

The magnitude of the launching velocity in the stationary frame of reference is roughly

[ 1+e ]-_ (15)v = L_(l_e)j

which is, of course, more important than (dy/dt)sl , that is, dy/dt at point s
for practical considerations.

(see Figure 1),
1

Equations 9 and 10 can be integrated with the four initial conditions given by Equations

13 and 14; thus, the required orbits are found by successive approximation. The integrations
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were carried out on the IBM 7090 digital computer at Goddard Space Flight Center. The

Range-Kutta method was used, with At = 0.01.

For the case m = 1 and n = 1 in which a is fixed at 0.7600, the equations were first

integrated under the initial conditions given by Equations 13 and 14 for different values

of a, or equivalently for different values of e according to Equation 2. Even with this first

trial run it was found that, for the positive initial velocity - that is, with the plus sign in

the second of Equations 14 - the vehicle will return in some cases of a very nearly to its

initial conditions after a duration of about two sidereal months. This shows that these or-

bits are near to the required one that will encircle both the earth and the moon for a long

period of time. For a detailed study we take _ = 1.14 which is in the middle of the range

of interest 1.08 to 1.20. In this case, the initial conditions at point S 1 follow directly from

Equations 13 and 14 and are numerically equal to

y

dx

dy

= -0.39215 ,

: 0 ,

= 0 ,

= 2,3670 .

(16)

O
!

bo
M,a

It could then be argued that the desired orbits which must be closed ones in the present

frame of reference should have the property that at their closest approach both to the moon

and to the earth

y = 0 , _l

dx
d--_'" = O.

(17)

These two conditions provided a basis for determination of the correct value, if any, of

(dy/dt)s I in order to generate a closed orbit. Thus, we obtain the correct value of

(dy/dt)s I = 2.35165. A final integration with this value as the initial condition was then
performed up to t = 240. During this time interval of nearly 3 years (38.20 sidereal

months), 19 encounters with the moon were obtained. The orbit repeats itself after each

encounter. This indicates that the orbit (Figure 2) is a closed one for all practical purposes.

It should be mentioned in passing that it took the IBM 7090 computer about half an hour

to compute, with double precision, the path of the third body from t = 0 to t = 240 with

At = 0.01.
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y (EARTH -MOON SEPARATION UNIT)

t2

I

(EARTH - MOON

SEPARATION
UNIT)

-I.2

Figure 2-A retrograde orbit which makes periodic encounters with the
moon. The orbit is drawn in the frame of reference rotating with the
earth E and the moon M.

It should be pointed out here that the final _, as is seen from Figure 2, is about 1.16,

which is much larger than the initial value of 1.14. Thus, if it is desirable for the third

body to be closer to the moon during its passage there, the computation should be started

with a smaller initial value of a.

The desired orbit corresponding to negative ejection, i.e., with the minus sign in the

second of Equations 14, is not so easy to generate. In the case of _ = 1.14, the first

trial under the initial conditions at point $1,

x = -0.39215 ,

y = 0 ,

(18)

dy _

d--i- - -1.6070 ,
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which follow directly from Equations 13 and 14, leads to an orbit which does not return to

the initial space and velocity coordinates. After trials it was found that the correct value

of (dy/dt)sl should be around -1.61025. A further integration with this value was per-

formed up to t -- 60, but the result is not quite satisfactory. After three passages around

the moon, which are identical within the accuracy of the plotted figure, the third body de-

viates greatly at the fourth passage and never reachesthe other side of the moon again be-

fore t = 60. The orbit before the fourth encounter with the moon is illustrated in Figure 3.

y(EARTH- MOONSEPARATIONUNIT)

i
I.I

1.0

S-)
.I

-I.2-1.1 -I.0 -9 -.8 =7 -.6 -.5 -3 -2 ".1 _E? ...... I

-.2

-_

_ -I.0

-I.I

-I.2

1.2 ----_ x

(EARTH - MOON
SEPARATION

UNIT)

Figure 3-A direct orblt which makes periodic encounters with the

moon. The orbit is drawn in the frame of reference rotating with
the earth E and the moon M.

O
!

L_
i-L

It can be seen from Figure 3 that the final a is about 1.07 which, contrary to the case

of positive ejection, is much smaller than the initial value of 1.14. The strong perturbation

by the moon at the time of close encounter is the reason why a closed orbit is so difficult to

obtain in the present case. However, the orbit has the advantage that it gives the probing ve-

hicle a longer time to look at the other side of the moon than the retrograde orbit can provide.
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In Figure 4 we have converted the closed orbit in Figure 3 into the actual path in the

stationary coordinate system (denoted by _ and _). The heavy line represents the circu-

tar orbit of the fictitious moon. The complete path of the third body covered in time from

0 to 60 has not been drawn because it would make the figure too cluttered to be clearly

discerned. Only those portions of the path are drawn that indicate critically the intrinsic

behavior of the orbit. Thus, the third body is launched at t = 0 at the point marked by 0

when the fictitious moon is at the point marked also by 0 on the circular orbit. The third

body at first moves on nearly elliptical orbit because the effect of the moon is small.

After about one and a half revolutions during which the fictitious moon has traveled a little

less than a complete revolution around the earth, the third body and the moon have a close

encounter at about t = 6. In the figure, the positions of the moon and the third body at

t = 5.68 and t = 6.04 have been indicated; obviously the closest encounter occurs between

these times.

The encounter perturbs the third body so strongly that the line of apsides of its orbit

is rotated an appreciable angle as is clearly seen in the figure. The third body now re-

volves on a new orbit. Only a little more than one revolution of the new orbit is shown in

the figure. Actually there are a little less than three complete revolutions before the third

body has another close encounter with the moon. The second encounter occurs at a time

between t = 17.28 and t = 17.68; the positions of both the moon and the third body at these

times are again marked in the figure. The second encounter again perturbs the third body

into a new orbit. This process of shifting the line of apsides repeats itself in a time inter-

val of a little less than three periods of the third body (or a little less than two sideral

months).

If the successive encounters only make the line of apsides rotate without affecting

other elements of the third body's orbit, the orbit will be a stable one; that is, the third

body will revolve around the moon as well as around the earth for a long period of time.

Actually the perturbation does cause the changes in other orbital elements. These changes

slowly destroy the synchronization of the motions of the moon and the third body. Because

the moon and the third body are revolving around the earth in the same sense, a slight shift

in phase of the encounter eventually brings the two bodies closer together during the en-

counter. Therefore, the perturbation increases rapidly and destroys completely the syn-

chronization. For instance, the semimajor axis, and consequently the period, of the third

body's orbit is greatly increased after the fourth encounter (Figure 4). The third body no

longer revolves around both the earth and the moon thereafter.

Another difficulty of this direct orbit for practical use is the large angle with which

the orbit rotates after each of the first three encounters. Since the moon's orbit is not

actually circular but elliptical, the change in the separation between the moon and the earth

would destroy the regularity even at the first encounter.
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Figure 4-The direct orbit of Figure 3 seen in the stationary frame of reference. The heavy circle

represents the moon's orbit. Numbers denote times of passage of the moon and of the third body

at various points on theirrespective orbits near each close encounter. For example, the first close

encounter occurs between t = 5.68 and t = 6.04.

The retrograde orbit shown in Figure 2 is difficult to draw in the stationary frame of

reference because the orbits of the third body in different revolutions around the earth are

so crowded that they cannot be discerned when plotted together in one single diagram. In-

deed, the nature of perturbation on the third body in the retrograde orbit is quite different

from that in the direct orbit. In the latter case, the moon and the third body have a close

encounter of long duration nearly every three revolutions of the third body, while for the

rest of the time they are quite far apart. Consequently, the modification of the orbit as a

result of the lunar perturbation occurs suddenly during the encounter - as can be seen in

Figure 4 - but is not appreciable in other times. With the retrograde orbit, on the other
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hand, encounters are more frequent - though less drastic because of shorter duration.

Hence, the modification of the orbit occurs gradually. In other words, the orbit is drifting

slowly in contradistinction to the sudden shift in the case of the direct orbit. Moreover,

the particular orbit that has been considered here for the retrograde motion has a much

more distant encounter with the moon than does the orbit of direct motion that has first

been discussed. Thus, the perturbation is smaller accordingly, and the third body in the

present case moves around the earth in nearly the same region of space again and again.

For this reason it would be very confusing if the path corresponding to Figure 2 were

plotted in the stationary coordinates. To illustrate the general behavior of the retrograde

orbit, the portion of the path near the moon is shown separately at different encounters is

shown in Figure 5. Just as in Figure 4, the positions of the moon and the third body at

labeled times are marked on the orbits respectively. Here the regularity of the encounters

can be seen most clearly.

In both direct and retrograde orbits, the line of apsides retreats as a result of en-

counters with the moon. Consequently, the time interval between two consecutive encounters

is slightly more than two sidereal months in the case of the retrograde orbits and less than

Z

Z
0
I

td

Z
0
0

!

1.0

0,5

0

-0.5

6.4(

-r
F--

i,i
v

6.28

-I.0
0 0.5 1.0 1.0 1.0 1.0 1.0

(; (EARTH - MOON SEPARATION UNIT)
Figure 5-The first five encounters with the moon of the retrograde orbit of Figure 2, seen now in the

statTonary frame of reference. Plotted here are the motion of the moon (upwards)and that of the third

body (downwards). Numbers have the same significance as in Figure 4. The regularity of encounters
can be seen clearly, the period deviating from two sidereal months because of the motion of the line

of apsldes of the third body's orbit.
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two sidereal months in the case of direct orbits. As has been mentioned before, the shift

in the line of apsides is not a favorable feature if it is desired to apply the result under

the present approximation of circular motion to the actual earth-moon system of elliptical

motion (e = 0.05490).

STABILITY

The possibility of finding the desired orbits in the actual system of the earth and the

moon depends ultimately upon the tolerance in the initial conditions being such that the or-

bits obtained under the approximations of the restricted three-body problem will not be

destroyed immediately. In order to examine this tolerance, six more cases were integrated

for positive ejection with (dy/dt)s I to deviate from the correct value of 2.35165 by +0.05,

+0.10, and +0.15 percent, but with no change in other initial conditions. For each case the

equations were integrated up to t = 60. Figure 6 illustrates the behavior of the resulting

orbits in the stationary frame of reference. Just as in Figure 5, only the portion of the

orbit during the encounter with the moon is drawn. In each diagram the percentage devi-

ation from the correct value of (dy/dt)s is marked at the upper left corner. Five en-
l

counters are shown in each case. The dots mark the position of the moon and the third

body at the labeled times during encounters.

From Figure 6 it can be noticed that synchronization of the motions of the moon and

third body is completely destroyed in the case of -0.15 percent after the third encounter,

which takes place in the wrong side of the moon, while in other cases the regularity is

maintained up to t = 60. These orbits, which should be compared with the ideal case il-

lustrated in Figure 5, undergo oscillations in the distance of the encounter. This appears

to indicate the stability of the orbit under a small change in initial conditions. We are en-

couraged by this property to predict that an orbit encircling both the earth and the moon

for a period of a few encounters is obtainable.

Similarly, the equations for six more cases were integrated in connection with negative

ejection. Their initial conditions follow Equations 18 except with (dy/dt)s I being +0.005,

:L0.010, and +0.015 percent from the correct value of -1.61025. Note that the percentage

changes are only one-tenth of those considered for the retrograde orbit. The results are

shown in Figure 7. As with the case of Figure 6, only that portion of the path which en-

counters the moon is plotted. Similarly, the times and the positions of both the moon and

the third body during each encounter are marked in the diagram. All orbits in the figure

make only two encounters with the moon before they are perturbed out of synchronization.

This shows that theo_bi--t_s-not-stable undera sHgi_t Cii_e in the-e {-nitial conditions. Actu-

ally this fact can be expected from the behavior of the orbit shown in Figure 4, in which a

slight phase shift in synchronizations at the fourth encounter drastically changes the nature

of the orbit so that synchronization is completely lost thereafter.

!

t_

b_
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Although the distance of encounter in our example (Figure 7) is too short to derive a

general conclusion, we expect that this instability will not disappear even in those synchro-

nizing orbits which make more distant encounters with the moon. It can be easily seen

intuitively that when the moon and the third body revolve around the earth in the same plane

and in the same sense, a slight shift in phase of synchronization in both directions will
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Figure 6-The effect of a small change in the initial conditions on the stability of the retrograde
orbit. The percentage deviation of the launching velocity from the correct value is marked at the
upper left corner in each diagram which is, in all other respects similar to Figure 5. Except for the
case of -0.15 percent, all show stability of the encounters.
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Figure 7-The effect of a small change in the initial conditions on the stability of the direct orbit.
Even with such a small deviation in launching velocity (1,/10 the deviation of Figure 6), no more
than two encounters can be obtained; this shows the instability of the orbit. From both Figures 6
and 7, the deviation in the launching velocity appears to be less serious on the positive side than
on the negative side; this fact has practical significance.
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result a very close encounter and thus necessarily modify the orbit of the third body in a

drastic way. Consequently, if orbits encircling both the earth and the moon are required,

they should be looked for among the retrograde orbits.

CONCLUDING REMARKS

Although we have studied in detail only the case in which the initial value of a is 1.14,

it is obvious that the same procedure can be used to derive other synchronizing orbits

corresponding to other initial values of a. In this way a one-parameter family of orbits

with the desired property of encircling both of two finite bodies can be derived for positive

ejection as well as for negative ejection. For other pairs of values of m and n, other

families of orbits with the same property can be similarly generated. So there are many

families of desired orbits encircling both the earth and the moon under the approximation

of the restricted three-body problem. However, not all of them are qualified for actual

use once the eccentricity of the moon's orbit is taken into account. We would suggest that

a few good ones be chosen from these families of orbits, as the starting condition for further

successive approximation with both the moon's orbital eccentricity and the presence of the

sun taken into account.

Because of practical considerations, this report has dealt with the encounter of the

moon with the third body near the apogee of the latter's orbit. However, we should add

that retrograde orbits which make the encounter occur at the third body's perigee are ex-

pected to be more stable than these, simply from the fact that the perigee encounter lasts

a shorter time. This possibility should be considered if we require an orbit that will en-

circle both the earth and the moon for a few decades or more.
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